Search Results
95 items found for ""
- AUTOIMMUNITY – WHAT IS IT AND WHY IS IT INCREASING?
Autoimmunity is an umbrella term for a number of medical conditions with one common problem: the immune system. In autoimmunity, the body’s immune system mistakenly identifies healthy cells as invaders and attacks them. This disease can present in various forms and can affect any part of the body. For some, autoimmunity can disrupt hormone production, as in Hashimoto’s or Graves. In other people, it can present as a symptom of inflammation, fatigue, and pain. Some people even experience neurological changes, as in cases of MS. And while autoimmunity is not news to modern medicine, the increased number of reported cases per year is. It poses the questions - why are incidence reports on the rise, what, if anything, is causing its increase, and is there anything we can do about it? According to recent research, the increase in the number of new autoimmunity diagnoses has been growing between 4% and 9% annually, with the highest reported onset of the new disease being rheumatoid arthritis(1). Part of this increase may be contributed to increasing awareness and accurate diagnosis of autoimmunity, particularly celiac disease. Another concern is the increase in the likelihood of secondary autoimmunity in patients with previous diagnoses. Basically, once you have been diagnosed with one type of autoimmunity, the risk of developing another autoimmune disorder also increases. What Causes Autoimmunity? Our immune system responds to foreign invaders by attack and destroys tactics to keep the body healthy and strong. Sometimes, the body mistakes certain ‘self’ cells as an invader and triggers an immune response. Part of this response involves the production of both inflammatory and anti-inflammatory cytokines, intended to create edema, white blood cell influx and tissue reconstruction, but also regulate the process as it occurs. There needs to be a careful balance between the two types of cytokines to avoid negative outcomes, and without it, inflammation gets out of control and we lose grasp of immunologic tolerance to our own cells, leading to autoimmunity. While there is no single underlying cause for autoimmunity, multiple factors have been attributed to the disease's development. Some of these factors include, but are limited to: Stress Genetics Infectious Diseases Gut Dysbiosis Toxin & mould exposure Research studies have shown that about 30% of all cases are from genetic factors(2). The remaining 70% of cases are caused by other factors. This is good news because it means that the remaining 70% of factors may be modifiable if we can identify them and change them before autoimmunity onset. Early detection and modification may even lead to the prevention of autoimmune development together. Modifiable risk factors associated with increased risk of autoimmunity Some of the modifiable risk factors triggering autoimmunity may include certain foods we eat or toxins we come into contact with. Examples include: Increased organic solvent exposure, is commonly found in dry cleaning, paint thinner, nail polish remover, perfumes and detergents (3). Changes in intestinal tight junction permeability (aka ‘leaky gut’) associated with industrial food additives (4). Sugar, salt, emulsifiers, and gluten (4). Tobacco and alcohol use, as well as some medications including cardiovascular drugs, antiepileptic drugs and slow-acting anti-inflammatory drugs (5) Drinking cow’s milk may increase autoimmunity due to the cross-reactivity of albumin (6) Gut dysbiosis (aka imbalances in our microbiome) (7). It is important to remember autoimmunity develops from multiple factors. A good number of these factors can be controlled with changes to your diet and environmental habits. For further information about autoimmune disease and reducing risks, please feel free to schedule an appointment with Toronto Naturopathic Doctor, Dr. Courtney Holmberg ND by calling 647-351-7282 or booking online today! LernerC, JermaisP, MatthiasT. TheWorldIncidenceandPrevalenceofAutoimmuneDiseasesisIncreasing. InternationalJournalofCeliacDisease (2015); 151-155. https://www.immunology.org/news/report-reveals-the-rising-rates-autoimmune-conditions Barragán-MartínezC, Speck-HernándezCA, Montoya-OrtizG, MantillaRD, AnayaJM, Rojas-VillarragaA. Organicsolventsasriskfactorforautoimmunediseases: asystematicreviewandmeta-analysis. PLoSOne. 2012; 7(12): e51506. Fasano, Alessio. “Zonulin, RegulationofTightJunctions, andAutoimmuneDiseases.” AnnalsoftheNewYorkAcademyofSciences 1258.1 (2012): 25–33. ThierryVial, BrigitteNicolas, JacquesDescotes. Drug-inducedautoimmunity: experienceoftheFrenchPharmacovigilancesystem. Toxicology.1997; 119(1): 23-27. MacFarlaneAJ, etal. AType 1 Diabetes-relatedProteinfromWheat (Triticumaestivum) cDNACloneofaWheatStorageGlobulin, Glb1, LinkedtoIsletDamage. JBioChem. 2003;278:54-63. OpazoMC, Ortega-RochaEM, Coronado-ArrázolaI, BonifazLC, BoudinH, NeunlistM, BuenoSM, KalergisAM, RiedelCA. IntestinalMicrobiotaInfluencesNon-intestinalRelatedAutoimmuneDiseases. FrontMicrobiol. 2018 Mar12;9:432.
- PCOS and Pregnancy
PCOS is a medical condition that affects hormone levels in women, impacting 5%–20% of women of reproductive age worldwide and characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. Women with PCO end up producing a higher amount of male hormones, like testosterone and often experience resistance to the metabolic hormone, insulin. These imbalances can lead to issues with acne and missed menstrual periods (impacting fertility), amongst other symptoms. The 2003 Rotterdam criteria are currently the internationally accepted criteria by which PCOS is diagnosed. However, the pathogenesis of polycystic ovary syndrome (PCOS) is poorly understood. Part of the research conducted on the origination of the disease has shown that the likelihood of PCOS development in women may be determined at birth. Research in primates suggests that excess fetal androgen exposure may predispose the infant to the later development of PCOS through alternations in the epigenome (1). If there is an imbalance of hormones from PCOS during pregnancy, then there is an increased likelihood the baby may also develop PCOS if the infant is born female. Additionally, exposure to testosterone prior to pregnancy could lead to PCOS even when women have children later. Gestational diabetes and insulin resistance could also be potential risk factors for PCOS pregnancies. Not only are mothers with PCOS more likely to develop gestational diabetes (2) (some resources suggest getting tested even earlier than 24-28 wks because of this), pregnancy-induced hypertension, pre-eclampsia, preterm labour, and cesarean sections rates are higher in mothers with polycystic ovaries (3). From an environmental standpoint, we also must consider external influences on fetal epigenetics. PCE (perchloroethylene, commonly found in adhesives, household cleaners and dry-cleaned clothing) and bisphenol A (plastics) are two chemicals that when exposed to can lead to PCOS not just for a single infant, but for future generations (4). Can PCOS Come from Fathers? Research studies on whether PCOS could be passed from fathers to their babies have been conducted, and have found that there may be a connection through genetics, but not in the in-utero environment. The studies have found that male pattern baldness, metabolic issues, and obesity in fathers can influence if their offspring develop PCOS (5). The studies also found that even though male infants do not develop PCOS, they could essentially be affected by exposure to excess androgen while in the in-utero environment. Essentially, a male baby could be a future contributor to PCOS when they have children. Testing AMH as a predictor for PCOS AMH (Anti-Mullerian-Hormone) is a hormone found in women that seems to be a reliable predictor of certain hormonal problems, like PCOS. PCOS research has found that AMH levels in affected women tended to be higher throughout their pregnancy. However, for women with a higher BMI (body mass index), AMH was not always a good indicator of PCOS. Your naturopath may chose to order your AMH when assessing fertility status, in cases of multiple miscarriages, or if classic markers for PCOS diagnosis seem unclear. It may also be used as a helpful indicator of egg quality in patients without PCOS. Reducing Risks of PCOS While women cannot control the genetic factors contributing to their in-utero environment, there are some simple strategies they can try to reduce risks of higher androgens/insulin during pregnancy and the resultant impacts on their children. Exercise and Eat a Healthy Diet: It is important to be active and eat a healthy diet. Doing so will help control blood sugar levels, prevent insulin resistance, and reduce the risks of developing gestational diabetes during pregnancy. It’s also important to not over-exercise, as excessive exercise may increase over-androgen production. Maintain Your Weight: Maintaining a healthy BMI helps control androgen and insulin levels. Reduce Carbohydrates: Insulin levels are increased in people with a high-carbohydrate diet. For further information about PCOS, reducing risks, and what you can do to support a healthy pregnancy, please feel free to schedule an appointment with Toronto Naturopathic Doctor, Dr. Courtney Holmberg by calling 647-351-7282 today! References: Xu, N., Kwon, S., Abbott, D. H., Geller, D. H., Dumesic, D. A., Azziz, R., … Goodarzi, M. O. (2011). Epigenetic Mechanism Underlying the Development of Polycystic Ovary Syndrome (PCOS)-Like Phenotypes in Prenatally Androgenized Rhesus Monkeys. PLoS ONE, 6(11), e27286. Joan C. Lo, Seth L. Feigenbaum, Gabriel J. Escobar, Jingrong Yang, Yvonne M. Crites, Assiamira Ferrara. Increased Prevalence of Gestational Diabetes Mellitus Among Women with Diagnosed Polycystic Ovary Syndrome. Diabetes Care Aug 2006, 29 (8) 1915-1917; DOI: 10.2337/dc06-0877 Rose McDonnell, Roger J Hart. Pregnancy-related outcomes for women with polycystic ovary syndrome. Womens Health (Lond). 2017 Dec;13(3):89-97. doi: 10.1177/1745505717731971 Chaoba Kshetrimayum, Anupama Sharma, Vineet Vashistha Mishra, and Sunil Kumar. Polycystic ovarian syndrome: Environmental/occupational, lifestyle factors; an overview. J Turk Ger Gynecol Assoc. 2019 Dec; 20(4): 255–263. doi: 10.4274/jtgga.galenos.2019.2018.0142 Berg, T., Silveira, M. A., & Moenter, S. M. (2018). Prepubertal Development of GABAergic Transmission to Gonadotropin-Releasing Hormone (GnRH) Neurons and Postsynaptic Response Are Altered by Prenatal Androgenization. The Journal of Neuroscience, 38(9), 2283–2293.
- HYPERANDROGENISM: HIGH TESTOSTERONE AND DHEA IN PCOS
Polycystic Ovarian Syndrome (PCOS) is one of the leading medical conditions now impacting women of reproductive age, and can also have substantial impacts on a woman’s physical and emotional well-being. We’ve already covered symptoms and diagnostic testing of PCOS here, but let's dive deeper into one key hormonal disruption that seems to be particularly troublesome for my patient population – hyperandrogenism. Hyperandrogenism is common in PCOS, often seen as elevated testosterone and DHEA levels on blood work. And while these two hormones are often seen as synonymous when evaluating total androgenic burden, there is a significant difference between the two. Testosterone and DHEA are both classified as androgenic hormones, however some women with PCOS may have elevated testosterone, with normal DHEA levels, and vice versa. You also don't have to have cysts on your ovaries to present with hyperandrogenism (in fact, only about 20% of women with high androgens have cystic ovaries), and cysts on your ovaries don't always mean you’ll have high androgens. Have I lost you yet? High androgens are often to blame for many symptoms seen in PCOS, including Long menstrual cycles or irregular ovulation patterns Hair growth in areas not common in women, such as the chin, chest, nipples and navel Hair loss Acne and oily complexion Where Do Androgenic Hormones Come From? There are two primary sources of androgenic hormones in women: the adrenal glands, and the ovaries. The adrenal gland is responsible for producing DHEA and makes up on average ~ 25% of our overall androgen production. The ovaries, on the other hand, are responsible for producing testosterone. Small amounts of testosterone production is normal and necessary. In fact, I often see women with low testosterone present with depression, extreme fatigue and an overall low effect. In healthy women, the granulosa cells in the ovaries transform testosterone into estrogen to help maintain proper hormone balance. There is also a third androgenic hormone produced by both the adrenal gland and the ovaries called androstenedione. An imbalance in androstenedione levels is sometimes found in women with PCOS. Lastly, it's worth mentioning the role of 17-OH progesterone, which is not an androgenic hormone but is commonly elevated in PCOS. If you’re presenting with PCOS-like symptoms, but blood work is normal, it's worth having this hormone tested, as it can convert directly into androgens in the periphery. How Is Hyperandrogenism Managed? Of course, management for hormones always begins with testing to determine where (and if) there is an imbalance. Next, the cause of the imbalance needs to be identified. In some women, their hormonal imbalance could be highly processed western diets, lifestyle choices (heavy alcohol, sugar, caffeine), and/or a lack of exercise. For others, it may be genetic (some research suggests we’re born with it). More updated research looks at the role of oxidative damage and the influence of the microbiome on hormones. It is vital that the root causes of high androgen production be addressed. Treatment plans should always involve the following to support hyperandrogenism: Reductase inhibitors – certain herbs and vitamins can reduce the functioning of an enzyme known as 5-alpha-reductase. This enzyme is responsible for converting testosterone into dihydrotestosterone, which may produce symptoms up to 2.5x stronger than testosterone alone and is highly associated with androgenic alopecia. Antioxidants – resveratrol, vitamin D and NAC are a few of my favourites. More and more evidence is pointing at chronic inflammation as an important factor in metabolic syndrome, insulin resistance, and PCOS/diabetes. These antioxidants help reduce oxidative stress, optimize egg quality, and support healthy ovulation. Blood sugar stabilization – diet and exercise are key to supporting blood sugar. It’s not about extreme restrictions, but more so about learning which foods are most likely to spike blood sugar levels and replacing them with foods from the same category to help support steady blood sugar levels. Weight management – about 50% of testosterone is made in adipose tissue in women. Weight loss will help reduce androstenedione’s conversion of testosterone levels in the periphery. It is worth noting that PCOS research is still ongoing. While there is still much to be learned, much information has been obtained to help develop effective treatments that do not require hormone replacement (i.e. the birth control pill). Addressing hormonal imbalances associated with PCOS, also supports an overall risk reduction to comorbidities seen with PCOS, like cardiovascular disease and diabetes. For further information about PCOS, or to find out if you may have hyperandrogenism, contact Dr. Courtney Holmberg, Naturopathic Doctor in Toronto at 647-351-7282 to schedule an appointment today! Sources: https://www.ncbi.nlm.nih.gov/pubmed/22835450 https://www.ncbi.nlm.nih.gov/pubmed/17392600
- IMPORTANT FINDINGS ON THE GUT-BRAIN CONNECTION
For decades, the gut and brain were looked at as two separate entities. What we now know is that this couldn’t be further from the truth. Modern research is discovering that mood hormones play a direct role in the mechanisms of digestion (challenging the thought, are truly just ‘mood’ hormones), and even more interestingly, the microbiome. If you’ve ever had a ‘gut-wrenching’ experience or felt ‘butterflies’ when stressed, you’re likely no stranger to the influences stress can have on the way our digestive tract feels. However, have you ever stopped to think about why this happens, and how? The Vagus Nerve The vagus nerve is one of the longest nerves in the human body, with direct communication between the medulla oblongata (part of the brain stem responsible for autonomic control) and the stomach and colon. It is argumentatively the most important regulator of our ‘rest and digest' nervous system. The vagus nerve sends signals to the muscles of the stomach, encouraging it to move food into the small intestine. It also sends information back to the brain about the state of our digestive system. What’s of great interest to modern research is the role of the vagus nerve in the treatment of mood-related disorders, such as clinical depression. There is preliminary evidence showing that vagal nerve stimulation may be an important treatment option for treatment-resistant depression, PTSD and even inflammatory bowel disease (due to the ability to reduce inflammatory cytokines) (1,2). Furthermore, research is now suggesting the role of the microbiome in benefiting mood and anxiety may come from its effects on vagal nerve tone (3). Gut microorganisms are capable of producing and delivering neuroactive substances such as serotonin and gamma-aminobutyric acid, which act on the gut-brain axis. Preclinical research in rodents suggested that certain probiotics have antidepressant and anxiolytic activities (3). The research even goes as far as to show that stress exposure directly disrupts the microbiome in a way that increases the development of immune-mediated colitis (4). Lastly, the vagus nerve may also play a role in weight gain due to its influence on the hormones that control satiety and appetite (5). Diagnosing Gut Conditions and Problems When diagnosing gut conditions, it's always important to determine whether the issues could be related to various signals being sent from the brain, or vice versus. This is why determining the underlying causes is essential rather than just treating the symptoms. For instance, you may be experiencing frequent heartburn even though you are eating regularly and avoid foods that are excessively spicy or high in acids. Upon investigation, we discovered you have been under an excessive amount of stress at work. By properly supporting stress and inherently improving vagal nerve communication of gastric emptying, your bouts of heartburn may start to subside and disappear. Gut-Brain Connection Common Symptoms The body can present with a variety of symptoms when there is something wrong with the gut-brain connection. Some of the more common symptoms may include, but are not limited to: Insomnia Headaches Decreased sex drive Depression and/or anxiety Difficulty concentrating Excess weight gain or weight loss Lack of energy Increased sadness or anger Difficulty relaxing Poor memory recall Procrastinating Starting bad habits (Smoking, Excessive Drinking, etc.) Of course, there can also be numerous other underlying causes of the symptoms listed above. However, they should never be ignored. If you start to notice something is wrong, particularly with the presentation of new digestive symptoms under high states of stress (or vice versa), it’s best to see your Naturopathic Doctor to discuss ways you can support the gut-brain connection. Lastly, it’s important to remember that communication is a two-way street. While the research now concluded that IBS is not a stress-induced condition (just as many people with high-stress report IBS symptoms as those with less stress), we now know that stress can worsen your state of digestive health, and a poor state of digestive health and worsen your mental health. For more information about the gut-brain connection, or to find out what is causing your gut problems, please feel free to schedule an appointment with Dr. Courtney Homberg, Naturopathic Doctor in Toronto, by calling 647-351-7282 today! References: Evrensel A, Ceylan ME.The Gut-Brain Axis: The Missing Link in Depression.Clin Psychopharmacol Neurosci. 2015 Dec 31;13(3):239-44. Bonaz B, Sinniger V, Pellissier S.Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease.J Intern Med. 2017 Jul;282(1):46-63. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015 Apr-Jun;28(2):203-209. Gao X, Cao Q, Cheng Y, Zhao D, Wang Z, Yang H, Wu Q, You L, Wang Y, Lin Y, Li X, Wang Y, Bian JS, Sun D, Kong L, Birnbaumer L, Yang Y. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2960-E2969. Hagemann D, Meier JJ, Gallwitz B, Schmidt WE. Appetite regulation by ghrelin - a novel neuro-endocrine gastric peptide hormone in the gut-brain-axis.Z Gastroenterol. 2003 Sep;41(9):929-36.
- 3 FACTS YOU NEED TO KNOW ABOUT CALORIES AND WEIGHT LOSS
Calories in versus calories out were the de facto weight loss equation for decades. To lose weight, you simply reduce the number of calories consumed while increasing the number of calories used. However, the simple equation that we have adhered to as part of a healthy lifestyle may have actually been hindering our weight loss efforts. As our understanding of health and nutrition improves, so does what we know about the simple calorie equation – and this knowledge is changing the plate of the modern diet. 1. Not all calories are created equal. One reason why strictly counting calories can be an ineffective way to lose weight is that not all calories are good calories. While the energy content of calories is essentially the same in that they are an equal unit of energy, calories derived from whole foods are more effectively processed by the body than those found in processed foods. In other words, where a particular calorie comes from will have varying effects on hunger, hormones, and weight. It is not just processed foods that can determine the value of a calorie. Calories obtained through healthy fats, proteins, and whole foods, like fruits and vegetables, can positively impact metabolism, curb hunger, and help optimize hormones. However, the same quantity of calories obtained from processed foods or sugar is metabolized more quickly and less effectively, resulting in increased hunger and hormone imbalance. 2. Food labels do not tell the whole story. The second reason that we do not see significant weight loss results from calorie counting comes down to the science of determining caloric content. For instance, in the United States, the Federal Food and Drug Administration allows manufacturers a fair amount of latitude in labeling precision – up to a 20% margin of error. What this means for consumers is that the food we eat may have more calories than is indicated on the label. 3. How we digest calories differs from person to person. The third reason that solely monitoring how many calories we consume is ineffective comes down to how calories are processed by the body. Historically, it was believed that we all used calories the same way and that is partially true. However, an individual’s basal metabolic rate (BMR) – the number of calories one needs simply to maintain voluntary and involuntary bodily functions, like respiration and circulation – will be greatly influenced by factors such as age, weight, and overall health. Hormones may also play a key role in how we digest and use calories. Insulin resistance, for instance, plays a crucial role in whether we store or use the calories we consume. Men and women also process calories differently – a factor often overlooked by conventional weight loss guidelines – which means that blanket recommendations may be ineffective. For more information and guidance concerning your metabolic health and wellness, please contact your Toronto naturopathic doctor, Courtney Holmberg, ND, at 647-351-7282 to schedule a consultation today.
- YOU ARE WHAT YOU HOST: ARE FECAL TRANSPLANTS THE WAY OF THE FUTURE FOR GUT HEALTH?
According to a new study presented by Dr. El-Salhy at the United European Gastroenterology week in Spain, fecal microbial transplants (FMT) may significantly improve the pain and distress caused by irritable bowel syndrome, if transplants come from what has been termed a 'super-donor'. The double-blind, randomized control trial study found that 75-89% of recruits aged 18-75 receiving 30-60 g of endoscope-administered feces into the duodenum donated the same day from a human 'super donor' reported significant benefits in their overall IBS symptoms after 3 months, with no long term adverse effects (1). Slightly greater benefits were observed in the patients receiving higher dose transplants and/or repeat transplants (2). Furthermore, Dr. El-Salhy suggested that preliminary results show 90-95% of the patient who responded are still well 1 year later, and 50% are 'cured' (3). While the cause of IBS remains unknown, many researchers suggest a correlation to the plethora of bugs that exist in our gut, also known as our microbiome. Fecal transplants have become of interest since research shows little sustained benefits to the use of oral probiotics for gut repopulation (as confirmed by microbiome testing) (4). Our guts are like fingerprints, and research suggests our digestive tracts are resistant to recolonization with probiotics for this very reason (4). In fact, some research suggests the recovery of our microbiome following antibiotics may actually be impaired by probiotic use, whereas FMTs produce a rapid and complete recovery within a matter of days (5). There's even some research showing FMTs may reduce the occurrence of SIBO in mice (6). Fecal transplants have been so successful in the management of infectious diarrhea, that the Infectious Disease Society of America has updated its guidelines to include fecal microbial transplants as a primary treatment method for the management and prevention of multiple-reoccurrence C. Difficile infections (the most common health-care-associated infection seen in hospitals)(7). What's even more promising is that medium size clinical trials are also demonstrating oral encapsulated fecal transplants do not show inferior outcomes to those delivered by colonoscopy, suggesting oral transplants may be an equally effective and less invasive intervention for treatment-resistant C. Difficle (8,9). The key to success, according to El-Salhy, is the use of donated feces from a 'super host'. The donor in the trial was young, healthy, and active, had been breastfed, had a nutritious diet, took no regular medications, was a nonsmoker and had taken antibiotics only a few times. This naturally poses issues with sourcing donors for a larger-scale therapeutic application of this research, as well as the reproducibility of the study results, knowing no two microbiomes look the same. At this point, fecal microbial transplants are not FDA or Health Canada-approved and are therefore not available to the public as a therapeutic intervention. Furthermore, El-Salhy's evidence is contradictory to numerous other studies conducted on FMTs. A recent meta-analysis (comparing data across multiple trials) shows there was no statistically significant difference in IBS outcomes between patients receiving FMTs and controls (10), concluding further research must be done on the efficacy of fecal transplants before it can be recommended as a therapeutic intervention for microbiome-related gut disorders. To learn more about microbiome testing, supportive diets, and recovery, schedule a consult with Toronto Naturopathic Doctor, Dr. Courtney Holmberg, ND today at 647 351 7828, or by booking online here. References: https://www.ncbi.nlm.nih.gov/pubmed/29100842 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628324/ https://www.nbcnews.com/health/health-news/fecal-transplants-could-ease-ibs-symptoms-if-they-come-super-n1068646 https://linkinghub.elsevier.com/retrieve/pii/S0092867418311024 https://linkinghub.elsevier.com/retrieve/pii/S0092867418311085 https://www.frontiersin.org/articles/10.3389/fcimb.2019.00348/full http://www.cidrap.umn.edu/news-perspective/2018/02/new-c-diff-guidelines-incorporate-fecal-transplant https://jamanetwork.com/journals/jama/fullarticle/2664458 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081131/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794695/
- ADRENAL FATIGUE: WHAT IS IT, AND ARE YOU SUFFERING FROM IT?
Adrenal fatigue is a functional condition which can occur as a result of stressors in the body. We’re quick to identify with emotional stress, but we often forget that stress can also come from physical and environmental stressors. Adrenal fatigue occurs when the adrenals release higher levels of hormones into the body than normal as a response to a continuous or persistent stimulus, resulting in an output of these hormones being greater than the production, and ultimate fatigue of the glands. They are considered fatigued since they are essentially drained of their active and stored hormones, and need time to recover. Yet, recovery is limited and difficult when we continue to lead a busy and stressful lifestyle (which is what ultimately caused the problem in the first place). Rather than slowly starting to recover, the adrenals remain drained and strained. Furthermore, we add aggravators like limited and/or poor quality sleep (which prevents rebuilding and recovery), processed foods, alcohol and cigarettes (which create physical stressors to the system) and high caffeine intake to deal with the fatigue (which creates a further draining of the gland by increase cortisol output). As you can imagine, the ongoing “fight or flight’ response of our nervous system is often accompanied by higher anxiety levels or an ongoing and unexplained sense of dread. Both of these conditions can affect numerous systems in the body. For instance, blood pressure rates are elevated, our beneficial microbiome shuts down, and our morbidity and mortality rates climb as a result of ongoing, unmanaged stress. Other side effects we can experience are problems with our sleep cycles and lowered immune response to fight illnesses and diseases. Not getting sufficient amounts of deep sleep further feeds our stress levels, affects our cognitive abilities, and much more. As you can see, adrenal fatigue can be the start of other health-related problems in our bodies. What are the symptoms of adrenal fatigue? Symptoms can present in many different ways, depending on whether the cortisol is persistently elevated, or if your adrenal glands have hit an exhaustion phase. The most commonly reported symptoms include: - fatigue - never waking to feel rested - sleep disruption - moods: anxiety, depression, irritability - gastrointestinal symptoms - weight gain/difficulty losing weight - decreased thyroid function Adrenal fatigue patients will feel like they are in a constant state of illness, lethargic or "feeling gray". Suffering this type of listlessness, they become dependent on coffee, caffeine or other stimulants to get through the day, which ultimately exacerbates the underlying issues. How Is Adrenal Fatigue Treated? There are several different methods that can be used to address and treat adrenal fatigue. One option is to reduce and/or eliminate primary sources of stress from your life or find outlets to offload some of that stress. Some of the best strategies tend to be yoga and meditation. Yoga twice weekly for 60 mins has been shown to be as effective as Prozac in clinical trials for the management of anxiety and depression. Meditation has been shown to lower stress hormones in the body by over 60%. Interestingly, exercise can both support and worsen adrenal fatigue, depending on the level of exhaustion. If the adrenals are acutely stressed and are hyper-responding, low to moderate-intensity exercise can help burn up the overproduced hormones and return the nervous system to a more relaxed state. In this case, exercise is helpful. However, when the adrenal gland has hit levels of exhaustion (meaning stress hormone output is suboptimal and the adrenals are no longer properly responding), high-intensity exercise can cause a further worsening of the deficit. This is where lower impact, lower intensity exercise would be of more benefit. Yes, all of you high-intensity-exercising-burnt-out young ladies, that means you! Another option is the use of natural remedies that can help the body better process the hormones released during times of stress. These remedies block the natural defensive response to perceived stress, as well as better metabolize cortisol, adrenaline, and norepinephrine to minimize their long-term effects. Lower stress hormone output places less demand on the adrenals over time, and therefore the adrenals become less drained and fatigued. For further information about adrenal fatigue, and which treatments could be beneficial for you, please feel free to contact Dr. Courtney Holmberg, ND at 647-351-7282 to schedule an appointment today!
- THYROID DYSFUNCTION: IS YOUR IMMUNE SYSTEM TO BLAME?
The thyroid gland is a small butterfly-shaped organ that is responsible for some vital roles in the body, from controlling our metabolism to regulating our brain development. It also influences our heart rate, body temperature, muscle strength, body weight, and even cholesterol levels. The thyroid gland makes up part of the endocrine system, which is a combination of glands that produce, store, and release hormones into the bloodstream for the purposes of cellular communication. The three main hormones involved in thyroid function are TSH (thyroid stimulating hormone), T4 (triiodothyronine), and T3 (thyroxine). Unfortunately for some, the thyroid ceases proper functioning and a whole host of symptoms often emerge. Determining what treatment will be best to treat a thyroid hormone imbalance begins by first determining the root cause of the dysfunction. The most common causes of thyroid dysfunction include: - Deficiencies in iodine, selenium, and iron, leading to inadequate production of thyroid hormone - Poor conversion of inactive to active thyroid - High reverse T3 causing competitive inhibition of active hormone - Poor supply of hormones from primary failure of the thyroid gland - Drug-induced by the following medications: amiodarone, nitroprusside, sulfonylureas, thalidomide, interleukin, lithium, perchlorate, and interferon-alpha therapy (1) - Autoimmunity attacking the gland and/or receptors (Hashimoto's or Graves’ Disease) There are two primary thyroid hormone imbalance types: an overproduction of thyroid hormones, called hyperthyroidism; and an underproduction of thyroid hormones, called hypothyroidism. Hypothyroidism is marked by a decrease in Triiodothyronine and thyroxine (T4 and T3) hormones and a rise in thyroid-stimulating hormones. A person diagnosed with hypothyroidism may experience increased sensitivity to cold, hair loss, weight gain, muscle weakness, unrelenting fatigue, lethargy, constipation, and irregular menstrual bleeding. The autoimmune-induced form of hypothyroidism is known as Hashimoto’s Disease. Hyperthyroidism is marked by an increase in triiodothyronine and thyroxine (T4 and T3) hormones and a drop in thyroid-stimulating hormones (TSH). A person diagnosed with hyperthyroidism may experience changes in appetite, mood swings, insomnia, heat intolerance, heart palpitations, diarrhea, weight loss, and hand tremors. The autoimmune-induced form of hyperthyroidism is known as Grave’s Disease. Whether you have been diagnosed with hyper or hypothyroidism, knowing if it is autoimmune-related is important. In essence, autoimmune disorders cause the body to attack itself by releasing antibodies to destroy self-tissue, ultimately disrupting hormone production. If your thyroid condition is related to an underlying autoimmune disorder, treatment should include management of the autoimmune disorder as well as addressing the thyroid hormone imbalance. Testing for Autoimmune Thyroid Conditions Fortunately, determining whether or not your thyroid hormone imbalance is caused by an autoimmune disorder is relatively simple. A blood test can help determine the presence of antibodies, indicating autoimmunity. Thyroid Stimulating Immunoglobulin (TSI): this immunoglobulin looks identical to thyroid-stimulating hormones, the stimulating hormone responsible for regulating T4 and T3 hormone production. When anti-TSI is present, an overproduction of T4 and T3 occurs, causing Grave’s Disease. Anti-thyroid Peroxidase (Anti-TPO): Thyroid Peroxidase is an enzyme that facilitates the movement of iodine into the thyroid gland to help produce hormones. If anti-thyroid peroxidase antibodies are present, the body can no longer move iodine properly, and triiodothyronine and thyroxine hormones cannot be produced. The presence of anti-thyroid peroxidase is seen in 83% of Hashimoto’s patients, and 53% of Graves patients (2). Anti-thyroglobulin: Iodine attaches itself to thyroglobulin — a protein formed from the amino acid tyrosine — to make the Triiodothyronine and thyroxine hormones. When anti-thyroglobulin antibodies are present, the thyroid is missing an essential protein necessary for thyroid hormone production. The presence of anti-thyroglobulin generally indicates that the thyroid condition is autoimmune-based, creating hypothyroid symptoms. Furthermore, it’s important to note that some people present with mild (or subclinical) hyper or hypothyroid symptoms before the TSH, T3, and T4 become abnormal. This can be a result of antibody presence. Just because you’ve been told your “thyroid hormones” are normal, it does not rule out the presence of autoimmunity. If you have symptoms, your antibodies should be assessed. Treatment Options Several treatment options have been shown to improve symptoms related to autoimmune thyroid hormone imbalance disorders. Ashwagandha: An 8-week study of patients with hypothyroidism found that taking 600 mg of ashwagandha root extract daily led to significant improvements in thyroid levels, compared to placebo. If fact T4 and T3 levels increased by 19.6% and 41.5% respectively, and TSH decreased by 17.5% (3). It also helps reduce stress, leading to better T4 to T3 conversion (3). However, ashwagandha can exacerbate hyperthyroid symptoms, and should not be used in graves disease (4). Myo-inositol: a naturally occurring sugar that helps regulate several hormones including insulin and TSH, shown by research to significantly reduce both anti-thyroid peroxidase and anti-thyroglobulin antibodies. Selenium: This trace mineral (found in high concentrations in Brazil nuts) has been shown to reduce anti-thyroid peroxidase antibodies in Hashimoto’s patients. It can also be taken as a supplement. Natural Desiccated Thyroid: If the gland has stopped functioning, replacement of the hormone will be necessary. Natural desiccated thyroid (NDT) is a glandular therapy taken from porcine sources, containing a 4:1 ratio of T4: T3. Some feel superior on this product to T4 therapies like Synthroid or levothyroxine, because of the T3 contents (which pharmaceutical interventions do not contain). This is a prescription-only therapy and should be discussed with your Naturopathic doctor to see if it's the right option for you. Vitamin D: found in fatty fish, like salmon, and supplemental vitamin D, in combination with other treatments, like levothyroxine, can reduce thyroid antibodies. It's important to understand the cause of thyroid dysfunction before treatment is initiated. For example, jumping to thyroid hormone replacement would be preemptive if the cause of the nutrient deficiency. Furthermore, if the gland has unfortunately failed, spending time with herbs and minerals will only delay the inevitable need for hormone replacement (Natural Desiccated Thyroid, or synthetic T4: Synthroid, levothyroxine, etc). For more information about thyroid hormone imbalance treatment options, and to discuss the use of Natural Desiccated Thyroid as an option for your thyroid management, please contact your Toronto Naturopathic Doctor, Dr. Courtney Holmberg at 647-351-7282 to schedule an appointment today. https://www.cancertherapyadvisor.com/home/decision-support-in-medicine/labmed/drug-induced-hypothyroidism/ https://www.ncbi.nlm.nih.gov/pubmed/8088002 https://www.ncbi.nlm.nih.gov/pubmed/28829155 https://www.ncbi.nlm.nih.gov/pubmed/22394559
- SUPPLEMENTING DIGESTIVE ENZYMES: WHEN ARE THEY TRULY HELPFUL?
The gnawing, unrelenting discomfort and bloating of indigestion. Most have felt it, whether brought on by spicy food, greasy meals, alcohol or just simply overeating. Or maybe it's pain after eating. Food comes in, and the stomach begins to cramp, leaving you doubled over in pain. The occasional occurrence will usually resolve on its own, but if it's becoming chronic, you’re likely frequenting the pharmacy shelf with little relief. So you head to the natural food aisle or health food store. Digestive enzymes promise to fix everything from bloating to flatulence to heartburn relief. However, understanding how digestive enzymes work helps narrow down when to use them, and when to avoid wasting your dollars. What are digestive enzymes? Digestive enzymes break down the nutrients from the foods we eat into their smaller components, in order to allow for their absorption by the body through the small intestinal lining. Think of food as a string of pearls, and enzymes as the scissors that chop up that string into individual pearls, which can then be absorbed by the body. Humans produce enzymes, but we also obtain them from some of the foods we eat. The human body secretes enzymes from the main areas of digestion: the mouth, the stomach, the small intestine, and the pancreas (the largest producer). There are several different types of digestive enzymes, each with its own role in digesting certain types of foods. Among these enzymes are: Proteases and peptidases: help break down proteins Lipase: breaks down fats Nuclease: breaks down nucleic acids Amylase: breaks down carbohydrates In some instances, the production of these enzymes declines or stops altogether. The most common example of this would be lactose – our body slows or stops the production of the lactase enzyme, and as a result, we cannot break down and absorb the lactose sugar. Branch chain sugars ending up in our colon can lead to bacterial fermentation and gas, bloating, and sometimes stool changes. Enzyme deficiencies can slow the rate of digestion, resulting in food breaking down slower and nutrients not being absorbed. The symptoms that results are what are commonly known as “indigestion”. When to use them Whether our bodies are not producing enough enzymes due to age or disorder, supplementing our diets with enzymes may provide relief for digestive discomfort. Various disorders that benefit most significantly include cystic fibrosis, pancreatitis, and pancreatic cancer. Furthermore, digestive enzyme deficiencies, like lactase deficiency, would benefit from taking lactase-containing enzymes to aid the proper breakdown of lactose, when consumed. Taking an alpha-galactosidase enzyme can also reduce the discomfort felt from eating beans or complex carbohydrates. However, little evidence supports the use of enzymes for other common concerns like irritable bowel syndrome and acid reflux/heartburn. Often, the root cause of these concerns is not enzyme deficiencies, and so supplementing digestive enzymes provide little relief, despite the label claims. It's also important to remember that not all enzymes are made equally. Some enzymes are sourced from plants, while others may come from animal sources. Ensure to read the label, and check that the enzyme required for your needs is found on the label. Sourcing enzymes naturally Fortunately, many of the foods we eat already contain the supplements we need. Adding these foods, among others, to your diet can help provide the relief you need naturally: Pineapple: contains digestive enzymes called bromelain, which is part of a protease group of enzymes that help our bodies digest proteins. Sometimes pineapple can prove to be acidic for people with sensitive stomachs. Fortunately, bromelain is available as a dietary supplement but does have anti-platelet properties so is not recommended for individuals taking a blood thinner. Papaya: not only contains protease to help digest proteins but also papain. Papain helps break down proteins into amino acids. It’s important to make sure papaya is ripe and uncooked when you eat it. Papain is also available as a supplement and has been shown to relieve symptoms associated with IBS. Mango: contains amylase, which helps break down carbs into sugars. Honey: packs a power punch of helpful enzymes including diastases, amylases, invertases, and proteases. In addition to the enzymatic benefits, raw honey can soothe upset stomachs, and provide relief from heartburn and indigestion. Banana: contains amylases and glucosidases — both of which help break down starch into digestible sugars. Bananas are also a great source of dietary fibre, which can aid digestive health. Avocado: contains lipase, which helps break down fat molecules into glycerol and smaller fatty acids. The pancreas produces lipase on its own, but a lipase supplement can ease digestion — especially after a high-fat meal. Other enzyme-packed foods include kefir, ginger, kiwifruit, miso, kimchi, and sauerkraut. Adding some or all of these foods to your diet can improve your digestive health and relieve symptoms of everyday discomfort. Should you require a higher concentration of enzymes beyond that found in food, talk to your naturopath to find out if and what digestive enzyme supplement may be best for you. If you would like more information about managing your digestive health or naturopathic medicinal treatments, please feel free to contact Dr. Courtney Holmberg, ND at 647-351-7282 to schedule an appointment today.
- SUFFER FROM CHRONIC GI PROBLEMS? BIOFILMS MAY BE TO BLAME
If you suffer from chronic GI or nasal/respiratory problems but have been unable to get a proper diagnosis; or if you have tried antibiotics and antimicrobials to treat your irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), other chronic gut/respiratory problems with little success, it may be helpful to know what a biofilm is and why it may be at the root of your problems. It's estimated that a staggering 23000 people die from antibiotic-resistant infections every year, and the number is increasing. If your previous attempts at getting diagnosed or treating an existing GI condition haven’t been effective, it may be time to consider alternative treatment options to disrupt the biofilms living within you. What Are Biofilms? Biofilms are everywhere. They can essentially exist anywhere where aqueous conditions are present. There can be found in many environments, from underwater to the insides of our mouths (like the plaque on our teeth). They are all generally thought to be formed from microorganisms, like bacteria When the ideal environmental conditions are present, free-floating microorganisms will attach to the surface of a substance and begin to “set up shop,” so to speak. The microbes start to build a protective matrix made up of sugars and proteins called extracellular polymeric substances (EPS). The EPS acts as a protective shell for the bacteria living in the colony, allowing the microbes to share nutrients, replicate, and exchange genomic information to evade destruction (ie antibiotic resistance). There is a strategic advantage for microbes to form a biofilm colony. The colony is usually more resilient to stress and solo microorganisms. The protective matrix helps prevent antimicrobials and other substances from harming the inhabitants of the biofilm while allowing certain microorganisms to go dormant, which makes antibiotics less effective in killing the bacteria. Infectious microbes commonly known to produce biofilms may include Staphylococcus sp., Pseudomonas aeruginosa, Streptococcus sp., Listeria monocytogens, Clostridium sp., N. gonorrhea, and Candida albicans. Growth generally occurs through the layering of microorganisms and the EPS layer, and seeding dispersal. Clumps of cells or individual cells can leave the colony — a process called seeding dispersal — and reattach themselves to new areas of a surface. This can happen for any number of reasons but usually results in there being more than one biofilm colony on any given surface. Biofilm and Human Health It is estimated that up to 80% of chronic illnesses are caused by an abundance of biofilm in the body. Chronic lung infections in cystic fibrosis patients, chronic sinusitis, and inflammatory bowel disease are all caused by different kinds of biofilms within the body. Illnesses associated with biofilms can include: Chronic sinusitis S. aureus skin infection Antibiotic-associated enteritis caused by Clostridium difficile Chronic UTIs Candidiasis Autistic behaviours caused by neurotoxins from Clostridium overgrowth Lyme disease Biofilms make the treatment of chronic illnesses more difficult because they are resistant to antibiotics and antimicrobial treatments. Additionally, if diagnostic testing is looking for a particular bacterial presence, it may not show up on a test until the bacteria has dispersed from the film colony. Indications that You Have a Biofilm Problem Biofilms love the large intestine and upper respiratory pathways because the GI tract is generally moist - a condition that biofilms thrive. Generally, there are not any specific symptoms that indicate the presence of biofilm, but there are some signs that your symptoms are biofilm-related. If you have previously tried to treat your IBS or IBD symptoms with antibiotics or antimicrobials and the symptoms have persisted. For example, confirmed cases of SIBO sometimes do not improve with antimicrobial treatment. This is an indication that biofilms may be to blame. Your symptoms improve with antimicrobial treatment, but they seem to be recurring. This commonly happens with chronic sinusitis – a patient feels great during treatment, but all symptoms return when treatment is discontinued. Though chronic GI or sinusitis symptoms are present, there are minimal to no pathogenic overgrowths or infections evident in stool samples, nasal cultures, or sputum cultures. Natural Biofilm Disruptors Since testing for IBS, IBD, and other GI problems rely on the identification of specific microorganisms, biofilms can make diagnosing and treating your chronic gut symptoms particularly problematic. Biofilms provide a sort of protective shield against detection and prevent traditional treatments from breaking through the EPS barrier to get to the targeted organisms. There are natural ways to disrupt the biofilm in your gut, which can alleviate your symptoms and make testing for particular bacteria easier for your health practitioner. Here are just a few of the natural biofilm disruptors that have been proven to aid in the breaking down of biofilms: Garlic Oregano oil Serrapeptase Alpha lipoic acid Polysaccharide-digesting enzymes like Nattokinase and bromelain N-acetyl-cysteine As always, before beginning any kind of treatment, it is important to work with your healthcare practitioner to determine the best course of action and to ensure biofilm agents pose no harm. To discuss your gut health and treatment options, and to find an approach that’s right for you, call Dr. Courtney Holmberg, ND at 647-351-7282 to schedule a consultation today References: Anwar H, Costerton JW. Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990;34:1666-71. Bjarnsholt T1. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013 May;(136):1-51. Centers for Disease Control and Prevention. U.S. Department of Health and Human Services. 2013. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 2003;112:1466-77. Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014; 12:49-62. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. IJAA 2010; 35(4): 322-332. Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J ClinMicrobiol 2004;42:1915-22. Zapotoczna M, McCarthy H, Rudkin JK, O'Gara JP, O'Neill E. An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. JID 2015; 212: 1883-1893.
- A THOROUGH LOOK AT INTERMITTENT FASTING AND CALORIE RESTRICTION AS A BENEFIT TO HEALTH
Many health trends come and go, but one dietary trend that has seemed to endure the craze is intermittent fasting. The primary reason intermittent fasting (IF) has remained so popular is that it offers flexibility to fit a busy schedule, and (while I don't typically advise mindless eating as long as you're fasting) it doesn't ultimately demand restricted eating. What is intermittent fasting, and how is it done? Intermittent fasting is defined as a diet regimen that cycles through a period of time in which the body is driven into a catabolic state through fasting, where no significant calorie intake occurs, met with periods of fed states where no calorie restriction occurs. The windows for fasting are typically around 16 hours, met with an 8-hour fed state. Intermittent fasting can be used in a few different ways: Time-restricted feeding: You restrict the time you are allowed to eat to set hours of the day. For example, you eat all of your meals in an 8-hour window, from 9-5 pm. During the window, no calories are restricted, and outside of this window, no calories are consumed. Alternative day fasting: You alternate the days on which you restrict your caloric intake with ones where there are no restrictions. For example, Mon-Wed-Fri you fast for 24 hours/limit calories to 25% of your daily intake, while alternative days have no restrictions Full Day Fast: You only consume water and other liquids for 24 hours1-2 days per week. The most common approach is time-restricted feeding. Now, most guidelines state that the timing of these fed/fasted windows won’t matter – ie a fed state from 9 am – 5 pm will produce the same results as a fed window from 1 pm – 9 pm. We’ll talk about why that’s not always true in a moment. But first, let's look at the research that demonstrates the health benefits of intermittent fasting. Are There Benefits to Intermittent Fasting? Weight Loss: A systematic review of over 40 studies on intermittent fasting has shown it to have benefits on weight loss in the short term, with average weight loss around 9-11 lbs at 10 wks (1). This occurs for two reasons. #1 – during fasting, the body goes into a catabolic state to continually feed the brain. This means that when we run out of bioavailable sugar and glycogen stores, the body will start breaking down our fat as fuel, hence, fat loss. This mechanism typically peaks at about 12-14 hours, with some evidence suggesting the benefit is lost after the 16-hour mark (hence the common 16 hours fasted/8 hours fed approach). #2 - during fasted states, the body increases the production of human growth hormone (HGH), which helps maintain lean muscle mass. Therefore, in catabolic states in the presence of HGH, the body prefers fat breakdown instead of lean muscle mass (again, favouring fat loss). To further avoid muscle loss and promote fat mass loss, I typically recommend incorporating some form of daily exercise and maintaining a high fat/high lean protein diet while using intermittent fasting. Reduced Cancer Risks: The risks for certain types of cancer development and reoccurrence can be lowered through the use of intermittent fasting. Studies have shown higher leptin levels in the body do contribute to the development of certain cancers. Through intermittent fasting, leptin levels can not only be lowered but adiponectin levels can also be increased, which is a hormone that has been shown to be protective of metaplastic cell development. A trial published in JAMA Oncology in 2016 demonstrated that fasting 13 hours or more per night resulted in a statistically significant improvement in glucoregulation and a reduction in the reoccurrence rates of breast cancer (2), making it a simple non-pharmaceutical approach to minimizing breast cancer reoccurrence. Improved Cardiovascular Health: Intermittent fasting helps reduce low-density lipoprotein (LDL) or “bad” cholesterol and triglyceride levels. Having high levels of both LDL cholesterol and triglycerides increase the risks of heart disease, heart attacks, and strokes. Using a combination of intermittent fasting methods and eating a healthy diet can naturally reduce these risks. Better Regulation of Insulin Levels: The amount of sugar people consume in their diets has become a major cause of insulin resistance, which is one of the contributing factors of diabetes. By incorporating fasting methods just a few days each week, Intermittent fasting helps us become more sensitive to insulin, the fat-storage hormone, and leptin, our satiety hormone, ultimately improving sugar metabolism, while reducing insulin resistance. Improved Mental Stability: People who practice intermittent fasting report energy, as well as lower levels of anger, confusion, tension, and stress. Additionally, they found they were less prone to mood swings with longer periods of mood stability throughout their days. This likely has a correlation to better blood sugar stability, as well as improved mitochondrial function. Fasting has been shown to boost the quality of mitochondria (the energy producers of every cell) by speeding the rate at which old and damaged mitochondria are cleared. Where the research falls short: The first shortcoming to intermittent fasting is that when you compare apples to apples, research to date shows that intermittent fasting provides no further long-term benefit over calorie restriction, and calorie restriction provides no long-term benefits in weight loss. In fact, most long-term evidence shows calorie restriction has negative impacts on long-term weight loss. Now let me be clear here – daily calorie deficits are a good thing. Eating the same/slightly less and exercising more could never be a bad thing. However, when we examine some of the major clinical studies conducted on weight loss (the TODAY study, the Women’s Health Initiative study, and the Diabetes Prevention Program), data shows that despite initial weight loss compared to control groups, continuous calorie restriction did not amount to long term changes in weight or body composition. In fact, the members of these trials not only gained back all their weight but also now have to follow a calorie-restricted diet to maintain it. (4,5,6) With this being said, the long-term data for intermittent fasting benefits just simply doesn’t exist yet. Understanding that calorie restriction and intermittent fasting both have underlying catabolic actions call for the need for more long-term studies with follow-ups greater than 1 year would be needed before drawing conclusions about the long-term safety of intermittent fasting on metabolism. The second biggest pitfall to intermittent fasting research is that the majority of it is done in men. No large-scale, long-term follow-up trials have yet to be conducted on female subjects, which is a problem. Numerous trials to date show higher negative sequelae to dietary restrictions in women, such as carbohydrate deprivation inducing under-functioning thyroid in as little as 6 wks, and ketosis caused menstrual dysfunction in 45% of women after 6 months (7). And while we don't have great human trials for intermittent fasting for women, rat trials show significant impacts on reproductive hormones in as little as two weeks following IF (8). This information should be extrapolated with caution when deciding if intermittent fasting is right for you. When should intermittent fasting be avoided? While health benefits from IF exist for many people, the following people should not engage in restrictive dieting without the counsel of a medical professional: Type I Diabetes – while I do use IF in some of my insulin-dependent patients, it is recommended on a case-by-case basis, and with close supervision. Uneducated users can risk hypoglycemic events and severe health risks. Eating disorders that involve unhealthy self-restriction (anorexia, bulimia nervosa, orthorexia) Use of medications that require food intake or result in hypoglycemia Active growth stages, such as infants or adolescents Pregnancy, breastfeeding – there’s just not enough research to confirm its safety in pregnancy, and restrictive dieting during breastfeeding usually leads to decreased milk supply. My general advice remains to assess things on a case-by-case basis to determine if intermittent fasting is right for you, and for how long. Until more research confirms more long-term benefits and conclusive benefits in women, I usually advise sticking to IF 2-3 days a week and maintaining a whole foods, plant-rich diet the rest of the time. To find out if intermittent fasting and which methods are right for you, please feel free to contact Dr. Courtney Holmberg, ND at 647-351-7282 to schedule an appointment today! References: Seimon RV, Roekenes JA, Zibellini J, Zhu B, Gibson AA, Hills AP, Wood RE, King NA, Byrne NM, Sainsbury A. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol. 2015 Dec 15;418:153-72 Catherine R. Marinac, BA; Sandahl H. Nelson, MS; Caitlin I. Breen, BS, BA; Sheri J. Hartman, PhD; Loki Natarajan, PhD; John P. Pierce, PhD; Shirley W. Flatt, MS; Dorothy D. Sears, PhD; Ruth E. Patterson, PhD. Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol. 2016;2(8):1049-1055. doi:10.1001/jamaoncol.2016.0164 Seimon RV, Roekenes JA, Zibellini J, Zhu B, Gibson AA, Hills AP, Wood RE, King NA, Byrne NM, Sainsbury A. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol. 2015 Dec 15;418:153-72 Trepanowski JF, Kroeger CM, Barnosky A, Klempel MC, Bhutani S, Hoddy KK, Gabel K, Freels S, Rigdon J, Rood J, Ravussin E. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Internal Medicine. 2017 May 1. Johnstone AM. Fasting–the ultimate diet?. Obesity Reviews. 2007 May 1;8(3):211-22. Harvie M, Howell A. Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects—A Narrative Review of Human and Animal Evidence. Behavioral Sciences. 2017 Jan 19;7(1):4. Mady MA1, Kossoff EH, McGregor AL, Wheless JW, Pyzik PL, Freeman JM. The ketogenic diet: adolescents can do it, too. Epilepsia. 2003 Jun;44(6):847-51. Kumar S, Kaur G (2013) Intermittent Fasting Dietary Restriction Regimen Negatively Influences Reproduction in Young Rats: A Study of Hypothalamo-Hypophysial-Gonadal Axis. PLOS ONE 8(1): e52416. https://doi.org/10.1371/journal.pone.0052416
- DEBUNKING COLLAGEN, AND WHY EVERYONE’S SUPPLEMENTING IT
One of the core principles of functional medicine is to nourish the body and ensure it is getting the appropriate balance of nutrients to stay healthy. Traditionally, this was achieved in a hunter-gather diet by eating colourful whole foods and by practicing “nose-to-tail” eating of meat, which included the consumption of skin, cartilage, marrow, tendons/ligaments, and other parts of the animal that are now typically discarded. Unfortunately, much of this practice has been lost as a result of prepared meats, microwaves, and canned soups over homemade stocks. As a result, our diets have become deprived of an important protein, known as collagen. There is a lot of noise in the health industry lately about collagen supplementation. The concept of supplementing collagen attempts to regain what we’ve lost from our primitive diet, but the question becomes if supplementation has any benefit. Benefits of Collagen I’ll admit that when I first heard about the trend of supplementing collagen, I wasn't on board. It made no sense to me. Collagen is a tissue found in our bodies made from amino acids, vitamin C, etc. So how could supplementing the end product collagen benefit us? But as it turns out, research in mice shows that hydrolyzed collagen peptides (from gelatin) have a 95% absorption rate at 12 hours after intake, and it distributes in the body similar to that of raw amino acids, with the exception of cartilage (1). Collagen was seen to concentrate more than twice as high in cartilaginous tissue than raw amino acids (1), giving collagen some unique benefits. So, I jumped on the bandwagon. Collagen helps reduce joint pain and can aid people suffering from arthritis. Collagen is the primary protein found in the ligaments and tendons that connect joints together. It is also a major component of cartilage, which is a smooth connective tissue that coats our bones and allows for friction free movement. The body naturally produces collagen, yet as we get older, this production gradually decreases. As a result, joint pain can increase. Research shows that athletes who took a hydrolyzed collagen supplement for 24 weeks experienced less pain in their joints at rest and during movement (2), which may help physical performance and decrease joint deterioration. Collagen’s high affinity for cartilage makes it a more likely option for the prevention and management of degenerative arthritis. Collagen helps improve skin, hair, and nail health. The beauty industry has been promoting this benefit of collagen supplements for years. Positive effects gained from using collagen for beauty purposes include a reduction in wrinkles, an increase in skin density, reduced scarring in acne, and improvements in cellulite. A trial using 2.5 g of collagen peptides daily showed a significant decrease in the degree of cellulite and a reduced skin waviness on thighs in both normal-weight and overweight women (3). Another trial showed positive effects on wrinkles and dermal matrix synthesis with the use of collagen in just 8 weeks of use (4). Collagen can help improve digestion, gut integrity, and detoxification. I would have to argue that the most impactful benefit of collagen comes from its benefits on the gut. A healthy digestive tract contains a layer of tightly bound epithelial cells and a diverse colonization of microbes. However, microbial dysbiosis, refined/processed diets, and environmental stressors all have negative impacts on the integrity of your gut membrane and lead to increased permeability commonly known as “leaky gut” (5). Intestinal permeability allows for foods and other toxins to leak into our bloodstream, creating systemic symptoms correlated to food intolerances, autoimmunity, acne, fatigue & brain fog, eczema, etc. A diet high in collagen has numerous benefits for the gut and detox organs like the liver. Gelatin, which is formed from hydrolyzed collagen, helps reinforce the mucous layer of our guts and reduces the impacts of inflammatory endotoxins released from gut microbes (6,7). This may have profound benefits for those with Crohn’s/Colitis. Glycine and glutamine (amino acids found in collagen) have been shown to protect against gastric ulcers and strengthen the integrity of the gut mucosa (8,9). Taking collagen for its glycine has also been shown to help regulate the products of stomach acid and bile, which may help in cases of acid reflux. It also helps promote liver detoxification. Glycine stimulates the production of glutathione, which is a master antioxidant in the liver’s detox process (10), which has been shown to improve fatty liver disease and protect cells against free radical damage. As you can see, there are several benefits you can gain by adding collagen to your diet. How to get collagen Bone broth: But before we get into supplementation, remember that you can get collagen in your diet without the fancy powders and packaging. The most effective way is through bone broth soup, which is a common recommendation in functional medicine these days due to its rich collagen/gelatin content. I typically advise 250 ml of bone broth daily. Here’s a recipe to make your own bone broth. Collagen Powders: You can also get collagen from powdered supplements. Here are some important things to know when choosing a collagen supplement: Not all collagens are equal. Different bones contain different collagens. Beef hide is rich in collagen I & III, whereas chicken sources are rich in collagen II. Marine sources are available for vegetarian/vegan patients. Make sure to talk to your ND to ensure the collagen you are taking is right for your concerns. Check the quality and source of the collagen powder. It should be clear and tasteless when dissolved in water, should not contain fillers and additives, and should be from grass-fed, pasture-raised animals Make sure it's hydrolyzed – only hydrolyzed collagen peptides will convert to gelatin in the body, which is what we reap most of the benefits from. Before you start taking collagen, it is highly recommended you speak to a qualified naturopath, like Dr. Courtney Holmberg to determine if collagen would be safe and appropriate for your own personal health and well-being. Book an appointment online or call 647-351-7282 today! References: Steffen Oesser, Milan Adam, Wilfried Babel and Jurgen Seifert. Oral Administration of 14C Labeled Gelatin Hydrolysate Leads to an Accumulation of Radioactivity in Cartilage of Mice (C57/BL). The Journal Of Nutrition. 26 January 1999. P 1891-95. Kristine L. Clark et al. 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain.Current Medical Research and Opinion Accepted 29 Feb 2008, Published online: 15 Apr 2008. P 1485-1496. Schunck M, Zague V, Oesser S, Proksch E. Dietary Supplementation with Specific Collagen Peptides Has a Body Mass Index-Dependent Beneficial Effect on Cellulite Morphology.J Med Food. 2015 Dec;18(12):1340-8. doi: 10.1089/jmf.2015.0022. Epub 2015 Nov 12. Proksch E1, Schunck M, Zague V, Segger D, Degwert J, Oesser S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacol Physiol. 2014;27(3):113-9. doi: 10.1159/000355523. Epub 2013 Dec 24. Christian R. H. Raetz and Chris Whitfield. Lipopolysaccharide Endotoxins. Annual Review of Biochemistry. July 2002. Vol. 71:635-700 Franco Scaldaferri et al. Gelatin tannate ameliorates acute colitis in mice by reinforcing mucus layer and modulating gut microbiota composition: Emerging role for ‘gut barrier protectors’ in IBD? United European Gastroenterol J. 2014 Apr; 2(2): 113–122. Frasca, Venera Cardile, Carmelo Puglia, Claudia Bonina, and Francesco Bonina. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clin Exp Gastroenterol. 2012; 5: 61–67. PMCID: PMC3358810 Wang et al. Glutamine and intestinal barrier function. October 2015, Volume 47, Issue 10, pp 2143–2154 Tariq M, Al Moutaery AR. Studies on the antisecretory, gastric anti-ulcer and cytoprotective properties of glycine. Research Communications in Molecular Pathology and Pharmacology [01 Aug 1997, 97(2):185-198] Guoyao Wu, Yun-Zhong Fang, Sheng Yang, Joanne R. Lupton, Nancy D. Turner; Glutathione Metabolism and Its Implications for Health, The Journal of Nutrition, Volume 134, Issue 3, 1 March 2004, Pages 489–492